Skip Navigation

Civil Engineering


Faculty

Yong Rak Kim, Ph.D.

Associate Professor
Email: ykim3@unl.edu
Phone: 402-472-1727
Office: 362N Whittier, Lincoln, NE 68583-0856
Transportation Infrastructure and Materials Lab

Research Areas

  • Multiscale Analysis and Modeling of Construction Materials and Infrastructure Systems
  • Multiphysics and Multiphase Mechanics of Infrastructure Materials
  • Multifunctional Infrastructure Materials
  • Viscoelasticity of Engineering Materials and Structures
  • Mechanistic Analysis and Design of Roadways and Pavements
  • Bituminous Materials and Mixtures
  • Innovative Materials and Sustainable Transportation Systems
  • Recycling and Engineered Use of Construction Materials

Education
Ph.D., Civil Engineering, Texas A&M University, College Station, TX, 2003
M.S., Civil Engineering, Texas A&M University, College Station, TX, 1999
B.S., Civil Engineering, Hanyang University, Seoul, Korea, 1997

Honors and Awards
  • Faculty Recognition Award, Department of Civil Engineering, University of Nebraska-Lincoln, 2009
  • McNeel Distinguished Faculty Scholar, College of Engineering, University of Nebraska-Lincoln, 2008
  • NSF-CAREER Award, National Science Foundation, 2007
  • College Faculty Research and Creative Activity Award, College of Engineering, University of Nebraska-Lincoln, 2007
  • Best Paper Walter J. Emmons Award, Association of Asphalt Paving Technologists (AAPT), 2006
  • Nomination of Best Paper K. B. Woods Award, Transportation Research Board (TRB), 2004

Teaching Interests

CIVE 378 – Materials of Construction
CIVE 334 – Introduction to Geotechnical Engineering
CIVE 472 – Pavement Design and Evaluation
CIVE 498 – Bituminous Materials and Mixtures

Selected Publications

H. Ban, Y. Kim, and S. Rhee. (2013). “Computational Microstructure Modeling to Estimate Progressive Moisture Damage Behavior of Asphaltic Paving Materials.” International Journal for Numerical and Analytical Methods in Geomechanics, 37, 2005-2020.

Y. Kim, F. V. Souza, and T. Park. (2013). “Multiscale Modeling of Damage Evolution in Viscoelastic Bituminous Mixtures Subjected to Cyclic Loading.” Journal of Engineering Materials and Technology, 135(2), 021005.

H. Ban, S. Im, and Y. Kim. (2013). “Nonlinear Viscoelastic Approach to Model Damage-Associated Performance Behavior of Asphaltic Mixture and Pavement Structure.” Canadian Journal of Civil Engineering, 40(4), 313-323.

Y. Kim, F. V. Souza, and J. E. S. Teixeira. (2013). “A Two-Way Coupled Multiscale Model for Predicting Damage-Associated Performance of Asphaltic Roadways.” Computational Mechanics, 51, 187-201.

Y. Kim and F. T. S. Aragão. (2013). “Microstructure Modeling of Rate-Dependent Fracture Behavior in Bituminous Paving Mixtures.” Finite Elements in Analysis and Design, 63, 23-32.

F. T. S. Aragão and Y. Kim. (2012). “Mode I Fracture Characterization of Bituminous Paving Mixtures at Intermediate Service Temperatures.” Experimental Mechanics, 52(9), 1423-1434.

H. Ban and Y. Kim. (2012). “Integrated Experimental-Numerical Approach to Model Progressive Moisture Damage Behavior of Bituminous Paving Mixtures.” Canadian Journal of Civil Engineering, 39, 323-333.

Y. Kim. (2011). “Cohesive Zone Model to Predict Fracture in Bituminous Materials and Asphaltic Pavements: State-of-the-Art Review.” International Journal of Pavement Engineering, 12(4), 343-356.